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SUMMARY 

PROBLEM 

Provide the underwater optical systems designer with a physical description of multiple 
scattering of light. Derive simple approximate expressions for the target plane illumin- 
ation which are valid in the region of present hardware viewing capabilities. 

RESULTS 

An iterative method is presented which yields an exponential model for underwater 
multiple scattering in the forward direction.   An easily evaluated effective attenuation 
coefficient is derived which al iws rapid prediction of flux through an aperture and 
on-axis irradiance.   Extensive comparison with experimental and Monte Carlo results 
indicate that our simple approximate expressions retain predictive value out to seven 
to ten attenuation lengths. 

RECOMMENDATIONS 

Further studies into delimiting the range of validity, relaxing some approximations and 
providing more rigorous justification for others, could improve the predictive utility of 
the present model. 
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INTRODUCTION 

Man's increased presence in the underwater environment has led to a need to increase 
the range of his sensory perceptions in this unfamiliar milieu.   The Naval Undersea 
Center has been particularly active in this area, realizing that the ability 'o perform 
useful tasks underwater is determined to a great extent by the quantity and quality of 
sensory inputs.    Recent years have seen great improvements :n our ability to utilize and 
exploit the information contained in optical and acoustic signals. 

In the field of underwater optics, many techniques have been introduced to enable 
viewing at greater distances.   Though each has its disadvantages, the techniques of 
range-gating, volume scanning, and adaptive scanning have yielded imagery at greater 
distances than heretofore possible.   Measurements of water parameters have led to an 
increased appreciation of the viewing problem and indicate that further improvements in 
viewing range are possible. 

Increased optical hardware capability presents a mixed blessing to the systems designer. 
To advantage is that he can now specify systems which are certain to yield increased 
viewing ranges over prior techniques.   However, he has difficulty predicting the per- 
formance of these systems since they operate deep in the multiple-scattering domain. 
Because the light is scattered many times in its travels from source to target to receiver, 
irradiance values become difficult to predict.   The use ot conventional single-scattering 
formulas can lead to predictions which are in error by orders of magnitude. 

The systems designer is thus faced with the problem of designing an underwater view- 
ing system which will perform in the complicated multiple-scattering domain.   Often 
compounding the problem is the designer's lack of familiarity with multiple scattering 
and the mathematical tools necessary to interpret the vast literature on this subject. 
Lack of time and money resources, especially in the preliminary design stages, might 
also prevent implementation by the designer of Monte Carlo or other computer-based 
numerical methods. 

Recognizing the system designer's dilemma, the Naval Undersea Center (NUC) has 
expended considerable effort to give him some methods that are applicable to problems 
in extended range viewing.   A handbook has been published (reference 1) which uses 
a hybrid Monte Carlo model and the concept of effective attenuation coefficients to 
obtain a description of image quality.   Also, a canonical design procedure, interrelating 
the various system and component parameters, is presented.   Another NUC report 
(reference 2) documents the Monte Carlo program used in the handbook and, by 
listing the program, allows the user to generate effective attenuation coefficients for 
cross sections not considered in the handbook. 

The work herein endeavors to aid the systems designer in two ways not included in the 
above reports.   First, Part I of this work presents a simple analytic model of multiple 
scattering of light.   It is hoped that this model will increase the designer's appreciation 
of the effects of the medium on the system's viewing capability.   Second, Part 1 of this 
report provides simple exponential expressions for the flux through an aperture and for 
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the on-axis irradiance.   These expressions are so easy to evaluate that *'ie implications 
of different scattering cross sections, scattering coefficients, and scattering to absorption 
coefficient ratios can in turn be quickly and easily evaluated.   A further advantage 
is that the functional dependence of the effective attenuation coefficient on the medium's 
inherent optical properties is explicitly displayed. 

Fart II of this report exhaustively compares the results of Part I with Monte Carlo 
simulations and c   'erimental data.   Part II shows, for the chosen scattering cross 
section, that all ti tee methods give results in good agreement for ranges up to six 
scattering lengths (i.e., generally seven to ten attenuation lengths'», but that the simple 
exponential model of Part I breaks down at longer ranges.   Since almost all state- 
of-the-art viewing systems are limited to six scattering lengths or less, the failure of 
the model at longer ranges will probat:y be of little concern to all but the mos; 
advanced and highest powered viewing systems applications. 
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INTRODUCTION 

The p-">blein of evaluating the intensity of a beam which has passed through a multiple 
scattering environment has occurred repeatedly in widely varying areas.   The passage of 
charged particles through thick foils, the shielding and moderating of neutrons, the 
scattering of high frequency sound by ship wakes, and the scattering of light both in 
the atmosphere and in water are all governed by multiple-scattering effects if the 
distances of interest are great enough.   Because of the importance of multiple scat- 
tering in many fields and over a long time span, the scientific literature is replete with 
contributions on the subject.   In contrast with most previous works, this report 
endeavors, at the sacrifice of some mathematical sophistication, to provide a rather 
intuitive approach and results which are computationally convenient. 

The theoretical approach which will be used here is known as an iterative procedure. 
Preisendorfer (reference 3) has called such a procedure a natural tool ". . . because 
the light field N in any medium may be thought of as the superposition of com- 
ponent fields N(" consisting of radiant energy having undergone i scatterings, i = 1, 
2. 3, . . ., after entering the medium".   In addition, this approach has other advan- 
tages as far as the underwater systems designer is concerned. 

The iterative method as used here is strictly an integral approach, that is, it sums up 
the intensities due to rays traveling from the source plane to the target plane.   Since 
there is no need to solve differential equations, no knowledge of this subject is 
required.   All the quantit'es needed in the calculation are directly physically measurable; 
no artificial constructs such as scattering kernels or transmittance operators are intro- 
duced.   Also, the iterative equations are subject to a simple implementation of the 
small angle and of the no-return backscatter approximation, which are a consequence 
of the highly peaked nature of the volume scattering function.   Without any evaluation 
of integrals, the resulting expression for the irradiance yields a straightforward physical 
interpretation.   Finally, the iterative procedure used here should have ap:    .1 to those 
readers who may be interested in Monte Carlo techniques, since there a.»; many 
similarities in the two methods of obtaining intensities in terms of the ray paths. 

In presenting the derivation, the author has tried to catalog all approximations as 
explicitly as possible.   Physical and/or mathematical justifications are presented with 
the hope that the reader will be able to assess the applicability of the present results 
to his own particular problem. 
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ANALYSIS 

STATEMENT OF PROBLEM 

The geometry of the problem is shown in figure 1.   Here, there is a source plane 
which contains an initially specified distribution of light.   At a distance R from the 
source plane is the target plane on which we wish to know Hie light distribution.   The 
space between these planes is filled with water of known optical properties.   The 
problem is to find the distribution of the light on the target plane as a function of 
the distribution on the source plane, the optical properties of the water, and the 
distance R. 

Two important restrictions allow us to simplify our problem immediately.   First, we 
shall neglect diffractive effects.   This is a reasonable approximation for most under- 
water applications and is discussed in reference 4.   Second, we shall deal only with 
light intensities and not amplitudes, i.e., we assume an incoherent process. 

In view of these restrictions, we can view light propagation in a very naive way.   The 
source plane is a specified source of photons,* each of which propagates in a straight 
line through the medium until    1) it is absorbed and stops, 2) it is scattered and 
(possibly) changes direction and continues, or 3) it reaches the target plane and stops. 
Figure 1 shows a typical photon which undergoes two scatterings before reaching the 
target plane. 

We define the light distribution and water parameters in terms of photons although 
they could be defined as easily in terms of energy flow.   One can hop back and 
forth from one description to another through the use of Planck's expression for the 
energy of a photon. 

The distribution of light on the source plane will be described in terms of the source 
plane's radiance, N0 (x0, y0, 0, , ^), defined so that NQ (xQ, y0, 0,, sP,)dxQ dyQ d ft, 
is the number of photons per second leaving the area element dx0 dy„ centered at 
(xQ, yQ) and heading into the solid angle dft,, centered at the angles 0t and $x.   The 
symbols xQ, yQ refer to Cartesian coordinates and 0,  and y?, to polar coordinates. 
The total flux, FQ, in photons per second leaving the source plane will be 

where the limits of integration are over all x"0* and all ß,. 

* Photons in the sense of Newton's corpuscles, i.e., photons which contain energy hut no phase information. 
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Figure 1.   Scattering Geometry. 
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The light distribution at the target is described by the irradiance H(xT, yT ), where 
H(xT, yT )dxT dyT is the number of photons per second arriving at the infinitesimal 
area dx ~ dyT centered at (xT, yT).   The flux, F, in photons per second entering a 
finite area (or aperture) A of the target plane is 

-/ H(xT , yT )dxT^. (2) 

The basic optical properties that we need are the water's absorption coefficient and its 
volume scattering function.   The absorption coefficient, a, is defined such that a#dß 
is the probability of a photon being absorbed after traversing an infinitesimal distance 
dß.   The volume scattering function, a(0), is defined schematically in figure 2 and 
algebraically by 

o(9) = Ml 
HdV 

(3) 

where J(0)d£J is the number of photons per second scattered into a solid angle du, 
centered at 0, and H is the number of photons per second per unit area (i.e., the 
irradiance) entering the scattering volume dV.   Integrating equation 3 over ß and 
using equation 2, we obtain 

scat / J(G)dS2 

F:„ HdA 
2ff /  a (0)sin0d0 dB, (4) 

since 

scat 
dV 

= the number of photons per second incoming = HdA 
= the number of photons per second scattered =     f J(0)dJ7 
= dA • dß 

(5) 

Because F^/F^ is just the probability of being scattered in the distance dß, we 
define the scattering coefficient s such that the probability of being scattered in the 
distance dß is 

sdß = / 2TT   /  a(0)sin0d0 c'ß / o(0 )dß dß. (6) 

We can also define the total attenuation coefficient, a, as 

a = a + s, (7) 
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dV = dA • dfi 

a(0) = J(g) 
HdV 

Figure 2.   Schematic of Scattering Process. 
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so that a • dC is the probability of either being scattered or absorbed in the distance 
dC.   Finally, we can define the backscatter coefficient b such that bsdS is the prob- 
ability of scattering in the distance di! by an angle 0 where ir/2< 0 < n: 

n 

b = -- J      o(0)sinÖdß. (8) 

Having defined the problem and the quantities of interest, we shall now outline the 
procedure to be used in arriving at a solution. 

OUTLINE OF THE ITERATIVE METHOD 

The fundamental concept of the iterative method is that the irradiance on the object 
plane, H, can be regarded as being formed from the infinite series in equation 9 where 
Hj is the irradiance contribution from all photons which have undergone exactly i 
scatterings. 

CO 

H = I   Hv (9) 
i=0 

This decomposition is illustrated in figure 3 for i = 0, 1, 2.   Here, the source plane 
is labeled by 0-coordinates, the target plane for the case of N scatterings is labeled 
by xN+1. and a set of N new planes, called scattering planes, is introduced and 
labeled by the coordinates i = 1,2, •••N, where N is the number of scatterings for 
the geometry when the photons scatter exactly N times.   All the planes are parallel and 
the origins of the planes' Cartesian coordinate systems   jx;, yjf   are all collinear with 
a perpendicular joining all the planes.   The distance between plane i and i + 1 is 
denoted by rj+| .   Also, eacii plane (except the target plane) has a set of polar coordin- 
ates assigned tha" will be used to reference the direction from which the photons 
leave the plane.   The polar coordinates   J0j , <£j | will be assigned to the i - 1 plane. 

The geometry' just introduced allows us to describe the iterative method in a succinct 
fashion.   First, equation 9 enables us to consider just those photons which have 
undergone exactly N scatterings.   These photons will be broken down into groups, 
called configurations.   Fach configuration consists of all photons which 1) scatter 
exactly N times and 2) scatter within a distance dr of r.  = a,  and r, = a, and 
*•• rN = aN and nowhere else.   The no-return backscatter approximation discussed in 
the next section will allow us to write a simple expression for the target plane 
irradiance of each configuration.   Summing (actually integrating) over the rj 'S W]H then 
account for all photons which have scattered exactly N times, i.e., summing over all the 
configurations yields the irradiance due to exactly N scatterings, HN.   Finally, the 
total irradiance on the target plane due to all the photons leaving the source plane 
will be obtaired by summing the HN's, N = 0, 1, ••* oo , according to equation 9. 
The iterative method thus involves segregating the light into small components, solving 
the problem for each component, and then obtaining the total solution by summing 
the component solutions.   We can do this because of the linearity of the processes 
governing the transfer of radiance. 

10 
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(a) geometry for photons undergoing no scatterings 

2 
♦ 

(b) geometry for photons undergoing 
exactly one scattering 

(c) geometry for photons undergoing 
exactly two scatterings 

Figure 3.   Geometry for Zero, One, and Two Scatterings. 
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DERIVATION OF THE OBJECT PLANE LIGHT DISTRIBUTION 

THE NO-RETURN BACKSCATTER APPROXIMATION      Figure 3(c) illustrates two 
fundamentally different types of rays (i.e., photon paths) which can occur in a given 
configuration.   Ray one has the property of 0j < 7r/2 for all i in the configuration, 
i.e.   a ray such as ray one will never acquire a component of motion directed from 
the target plane to the source plane.   As a consequence, all rays having this property 
also have the following properties:    1) all the photons enter each plane at which they 
are scattered from below (i.e., from a direction towards the source plane) and 2) each 
scattering occurs sequentially, i.e.. the ray scatters from the first scattering plane, then 
the second and so on.   Rays such as ray two have the property of Öj  >   xj2 for 
some i.   For a given configuration, this implies that 1) type two rays can enter any 
scattering plane from either above or below and 2) type two rays can scatter from 
the scattering pianos in any order (e.g., in figure 3(c) ray two scatters from the 
planes in the order 0-2-1-3).   Clearly, type two rays undergo a more complex scattering 
behavior and make our problem of evaluating the object plane irradiance more difficult. 

Fortunately, in typical oceanic waters type two rays are uncommon compared to type 
one rays.   This is a direct consequence of the small value of the backscatter coef- 
ficient of ocean waters.   An average of three readily available backscatter coefficients 
(references 5 through 7) indicates a value of b = 0.023.   Using the results in appendix 
A. we can express the range R at which ignoring type two rays introduces an error e 
in the flux reaching the target plane as 

R=^-, (10) 
b2c 

where c is the scattering to absorption coefficient (s/a) ratio and R is given in scat- 
tering lengths.   Taking c = 5.0 (a rather large value),  e = 0.05, and b = 0.03, we 
have R = 22 scattering lengths, a distance much greater than distances of interest here. 
Thus, we will ignore the contribution of type two rays in all the following calculations. 

The remaining type one rays have the important property of interacting with each 
scattering plane sequentially.   This means that the radiance distribution emerging from 
the i + 1 scattering plane is completely determined by the radiance distribution on 
the i plane.   Thus, to solve the problem of the irradiance on the target plane for a 
configuration containing N scattering planes, we need only compute 1) the radiance 
distribution emerging from a scattering plane due to the radiance distribution on the 
immediately preceding scattering (or source) plane and 2) the irradiance distribution on 
the target plane due to the radiance distribution on the last scattering plane. 

TRANSFER OF RADIANCE AND IRRADIANCE - Figure 4 shows the geometry for 
which we will calculate the transfer of radiance between two planes.   The geometry 
and symbols are similar to those shown in figure 3.   The known quantities are NQ 

(xQ, y0, 0 , <p ), the radiance distribution on the 0-plane, the water parameters, and 
the distance rt.   It is desired to obtain the outgoing radiance of the 1-plane in terms 
of these parameters. 

12 
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Figure 4.   Radiance Transfer Geometry. 
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The radiant intensity emitted by a small area dAQ = dxn dyQ of the 0-plane centered 
at (x0, yQ) is 

where 

and 

N(x0, y0, 01,^1)dxo dyQ, (11) 

[(x.  - x0):  My,  -y0)2]'A 

Ö, = arc tan l- 5 i ?  (12) 

*,  = arc tan rx ' M. (13) 

The total | hoton flux within the solid angle d£2,, bounded by Ö,  to 0, + do,  and 
ifil  to i^,  + d<£,, is then 

N0(x0, y0, 0s.^,)dxodyodni. (14) 

In free space equation 14 would represent the flux actually reaching the 1-plane. How- 
ever, because of the scattering and absorptive properties of the water lying between the 
planes, not all of this flux reaches the 1-plane. 

Considering the scattering interation first, the iterative model requires that in any 
given configuration we deal only with the rays that scatter within a distance dr of the 
scattering plane (in this case the 1-plane).   By considering the probability of not 
scattering in the distance r,, we will find the fraction of the flux (given by equation 
14) which leaches the l-p!ane unscattered. 

If we make the usual assumption that the probability of scattering in a short distance 
AC is given by 

sAC, (15) 

then the probability of not scattering in that distance is 

1 - sAC (16) 

and the probability of not scattering in the distance 2AC is 

(1 - sAC)(l - sAß) = (1 - sAß)2. (17) 

Now an arbitrary distance, SÜ,, may be represented as 

8, = nA£. (18) 
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Then, by  generalizing equation   17, we obtain  the  probability of not scattering 
in  the distance £,,  P   (?,), as l        ns v   l 

ns ,,, 
n 

P"(C,)= [1'• —L] (19) 

for n-»- x A£-*dC and 

n 

P   (&,)= lim   [l - — |    = c"sV (20) ns     I 
n~+oo n 

Early in this section we stated that the effects of absorption can be accounted for by 
terminating absorbed rays at the point where they are absorbed.   Although this is 
proper, it is inconvenient to terminate rays in the iterative approach.   Instead, we 
shall use an equivalent procedure (reference 8) which allows each ray to continue on 
through but v/eights its intensity by the probability of it not being absorbed in the 
distance traveled.   Since the probability of being absorbed in the short distance AC 
is given as a -AC, we obtain by a procedure identical to equation 16 through 20, for 
the probability of not being absorbed in the finite distance C,, P   (2,): 

PM(et) = e"'V (21) 

The probability of oeing neither scattered nor absorbed in the distance Cj  is then 

P„«,,..-<-*..,"~>^.;^. 

The amount of flux leaving the 1-plane from the element dxQ dy0 in the direction dQ-1 

which arrives at the 2-plane. is then 

cos 0 , 
e ' N0(x0. yü,Ö1,^1)dx0dy0dS21. (23) 

Now from figure 4, 

(IA;     <IA; cos2 o 

"l2 r2 
i l 
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Using equation 23 and 24 we obtain for the irradiance on the frontal plane dA', of 
the scattering volume dV 

«r. 

cos 0, 
H(dA ) = e ' 

cos2 0. 
No<xo' yo'öi-^i)dxodyo —75- (25) 

Inserting this value into equation 3, we can calculate dJ,(x , y , 02, <p2), the scat- 
tered flux leaving the volume element dV on the 1-plane due to the flux arriving at 
dV from the vicinity of xQ, yQ, as 

cos 0, cos2 0. 
i    vi    ,.„        ..        n .   \   A„       A.. 1 dJ,(x,, y,, c92, o2) = e '  N0(x0, y0, 0,, *,) dxG dyQ --^a (02,)dV, 

(26) 

where 02. is the angle between the incoming and scattered photon, i.e., 

02    = arc cos[sinö, cos^j sin02 cos^2 

+ sin0, sinip, sin02 sin<p2 + cos0, cos02 J. (27) 

At this point it is convenient to introduce the scattering probability density p(0) such that 

s 

so that 

(28) 

ß p(0)da = 1. (29) 

Noting that dV = dA   dr , we can now write (using equations 26 and 28) 

sdr       cos 0. 
dJJ(xJ)y1,02>v?2) = dAI   -^e 'N0(x0, y0, 0,,^) 

ri 

cos2 0,p(021) dx0 dy0. (30) 

The radiance, dN,(xi; y,, ö2, <p2), emerging from (x,, y,) and heading in the 
direction (02, v?2) due to photons entering the scattering volume dV from an elemental 
area surrounding (xQ, yQ) is 
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Or, 

dN,(x1,y,.ör^)=^e C0SÖ< N^y^,,*,) 

cos2ö, ,(02, )dx0, dyQ. (31) 

Integrating equation 31 over the 0-plane coordinates we obtain the radiance, Njfx,, 
yi- ^-t> ^2^' emerg'ng Irorn tne point (Xj, y,) and heading in the direction (02, ip2) 
as 

N^.y,.«..^"!1 / / 

Or 

cos 0 
' N0(x0, y0, 0,,^)- 

cos2 0,p(02,)dxo dyQ. (32) 

Noting that 

dn> = «^Vxodyo (33) 

we arrive at 

■A 
or, 

N,(xlt yt, 02, *2) - sdr, /   ^g— Nop(021)dn,, (34) 

which achieves our desired result of expressing the 1-plane radiance in terms of th^ 
0-plane radiance.   Since our derivation did not depend on the detailed properties o. 
the 0-plane or 1-plane, the subscripts 0 and 1 are dummy indices and we can immed- 
iately write 

Or, 

N2(x2, y2! 03, *,) = sdr2   /   JL___. NlP(032)dtt2. (35) 

Substituting the results of equation 34 into equation 35 we obtain 

N,(x,, y,, 0,, <p.) = s2dr 2V"2'   J2'      3'  ^3- ■•//■ 

Oti 2 

COS0„ 

Or, 

50, 

COS0, COS0, 2 "~ "" ! 

Nop(02I)p(032)dn,dn2 (36) 
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Clearly, by continuing this procedure, we can obtain the radiance emitted by the 
Nlh scattering plane as 

ar, 

V
X

N- >V dN+p*N*i> 

N 

N f        co> °i 
n  Sdr:     /      L>    -TJ- 
i+1     ' J      cosOj 

P(öl+1. jWn, N, (37) 

where     n   a   indicates the product of all the a 's. i = 1, 2, ••• N, and where the 
i+l     ' ' 

quantity in brackets acts as an operator on N .   Equation 37 thus provides us with 
an expression for the radiance leaving the last scattering plane of an N-scattering plane 
configuration in terms of the initial radiance, NQ, and the water character'stics. 

To complete the solution for a given configuration we need the target plane irradiance 
in terms of the radiance leaving the N,h scattering plane.   The geometry for this 
process is shown in figure 5.   The flux, d2F(xN. yN.0N+1- ^N + ])- leaving an area 
surrounding the point (xN. yN) and heading into the element of solid angle centered 
at <^N + I' ^N + P 's expressed according to equation 23: 

Or 
N + l 

d2F(xN.yN,0N+li%+1) = e N+1    NN(xN,yN,0N + p*NM) 

dxNdyNdftN + ], (38) 

where NN(xN. yN, #N + 1. ^N + J) '
S
 the radiance leaving the N"1 scattering plane. 

Since 

dfl 
dA'., j_. cos20 

N + l N+ 1 
N+ I 

'N + l 

(39) 

and 

we have 

dA'N+)  = cc".0N+]dxN + 1dyN+1 

«i N + l 

n » COS0N+1   M    (iA /  dXNd>'NCUS'°N + 1 d'KxN. yN. ÖN + 1, ^N + 1) = e NN
dAN + i   ( --r 

N + 1 

(40) 

(41 

Letting 3{"N  be the irradiance on the target plane due to a configuration containing N 
scattering planes, we have 



*-   *N + 1 

Fi^   e 5.   Target Plane Irradiance Geometry. 
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ttrN + ! 

d3f N = e 'N+l NN(xN, yN, ÖN + 1, vN+l)dnN + I (42) 

and the irradiance of the given configuration is 

ar N+l 

3fN - 
cos 0., + . 

NN(XN, yN,öN + 1,^N + 1)dßN+I. 

SI N+! 

(43) 

To obtain the total target plane irradiance, HN, of all configurations which involve 
exactly N scatterings, we must sum over all configurations, i.e., we must integrate 
5fN over all the drj, i = 1  ••■N.   For example. 

for H. 

for H. 

".-/ 

rrR 

w. 
r,=0 

(44) 

for H, 

and. in general. 

r2=R       r,=Rr2 

">■/    I JC,, 

r2=0       r,=0 

(45) 

j3=R       r2=R-r3       L=R-r3-r2 

J       J 
r, =0       r, -0 r, =0 

3f. (46) 

Hx 

N      /-1 

N 
r; =R- 2 

i+i 

3CN, (47) 
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with the conventions 

N 
I 
N+l 

r. = 0 n   aj=l 
3 i+1 

(48) 

and where the quantity in brackets in equation 47 operates on 3CN. 

Inserting the results of equations 37 and 43 into equation 47 yields HN as 

HN   * 

N 
T: -R- I    r: 

N+l      /■»        j+i 

or. 

M+i    ,->     i+1 j     r    cosöj 

ä y        j --f-p(0i+i,i)d"idri 
ri=o n, 

N, (49) 

where the factor within the square brackets acts as an operator and the following 
convertions apply:* 

?Q(rN + 1)drN + 1     =Q(rN+1) 

P(0N + 2'N+1^     =   l 

*\ 

K 
I   r.    =0   for k > 8 

i=k 
(50) 

f.    = 
i 

cos0;     i < N 

1        i = N+l 
^ J 

For example, 

Ho =    J     V 
«r. 

dft. (51) 

and 

-,-)■// 

n 

or 

cosÖ 

cosö, 

L_        a (R-r,) 

N^OjjJdn.dßjdr,. (52) 

o    n2  n] 

* where Q(rN+)) is an arbitrary function of rN+l 
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We achieve our goal of expressing the target plane irradiance in terms of the initial 
radiance and the water parameters by summing equation 49 according to equation 9: 

(53) 

In some cases we are interested in the flux, F, through an aperture, A, on the target 
plane. This is a somewhat cruder measure of the target light distribution and can be 
expressed as 

H =   I 
N=0 

r                         N                   or.                               1 

rR- IT,    r ~ 
N+l    /     i+i   J    /       «*, 

«"       It           I                                    1                                 rjfl             \AO     Ar No 1=1   J                       J           f          P(>H,i,d"i  dri 
o            n       i 

F=   /rldx^ 
A 

••54) 

where H is given by equation 53.   Using that equation and interchanging summation 
and integration we obtain 

oo 
F=   2      F, 

N=0     ' 

=   I     fnKd% 
N=0 / 

oo        / 
=    Z       / N=0   J 

cN 
N+l 

s"   n 

N 
R- I   r. 

i+1   J 

(Xr: 

T-p(e,+Itl)dnldri NodW (55) 

From equation 55 we see that the flux, F, also consists of components, each com- 
ponent resulting from photons which have scattered exactly N times. 

SMALL ANGLE APPROXIMATION - Although equation 53 provides a complete solu- 
tion for the target plane irradiance, it suffers from two major difficulties.  Being an infinite 
series, the Nrth term of which involves a 2N-tuple integral, equation 53-poses serious 
computational problems.   Second, the individual terms of the series are not in a form 
which is subject to the most fruitful physical interpretation.   When the small angle 
approximation is employed, equation 53 can be cast in a form which is very revealing. 

The small angle approximation involves the asrvmption that cosö. ~ 1 for all i.   For 
moderate ranges and for angular aperture*- 6 (as viewed from the source plane) which 
fulfill cos0 ~ 1, this approximation will be valid for the overwhelming majority of 
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the rays due to the highly peaked nature of oceanic scattering cross sections.   For any 
range and ray, if d is large, di will clearly be large for some i, and the approximation 
does not describe the target irradiance at these angles.   Also, as the range between 
target and source planes increases, the maximum angle 0max at which the approxi- 
mation holds becomes smaller.   Because optical viewing systems often perform in the 
region of moderate 0 and R. we shall employ the small angle approximation in all 
that follows. 

N 
Setting cosflj = 1 in equation 53 and noting that   2   r; = R, we obtain 

H=   2    sNe"aR 

N=0 

N 

r R- 2 ri   r »7 ,+' 7 p(fl.+ I   MSI. dr. 
i+ I ,   i 

0 a 
N, 

From appendix B we have the formula 

(56) 

N+l   f 

i=l J 
0 

N 
R-   S   r 

i+1 
dr. RN 

N! 
(57) 

Multiplying equation 56 by the right-hand side of equation 57 and dividing by the 
left-hand side, we obtain 

where 

and 

00      ^rD\N   -sR 

N=0 N! \   V 

hN 

N+l 
l     /P(ö

1+,.i)^i 
fi, 

N, 

(58) 

(59) 

<v> 

N 

N+l   / 

V 
i+1 

r 
j 

dr 

L,=! o 
c R- 

N 
i: r. 

N+l     / i+1 j 

11       / < 
i=l    J 

dr. 

(60) 
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Equation 58 is a simple and readily interpretable form for the target plane irradiance. 
Imagine the target and source plane separated by vacuum rather than water. Into 
this vacuum we insert N scattering planes. Each scattering plane has the property of 
unity probability of scattering a photon with an angular probability density p(0j+, ;). 
The planes are located at r, = a(, r2 = a2 •••, rN = aN. The 'arget plane irradiance 
due to the source plane's radiance propagating through these scattering planes is then 
hN. 

\hN^ is the value of the target plane irradiance averaged over all possible values of 
the r.'s.   From equation 60 we note that this average takes place without a weighting 
factor dependent on any of the r^s.   This means that, given the fact that N scat- 
terings occur, any of the configurations of the scattering planes is equally likely. 

According to equation 58, we next compute the weighted sum of the ^ hN y 's. 
These weights are just the probability of scattering exactly N times.   From equation 
58 we see that this probability is given by the Poisson distribution with a mean 
number Of scatterings equal to sR. 

Finally, the target irradiance H is obtained from this weighted sum by multiplying 
by e"aR.    All the effects of absorption are accounted for by this factor which repre- 
sents the fraction of flux that reaches the target plane without being absorbed. 

The simplicity of equation 58 is due to the small angle and no-return backscatter 
approximations.   Unfortunately, except for the first two terms, it cannot bo directly 
evaluated.   In the next section we shall establish some preliminary relations between 
the flux through an aperture and on-axis irradiance, leading to approximations for 
these quantities which can be easily evaluated. 

RELATIONSHIP BETWEEN FLUX AND ON-AXIS IRRADIANCE - One of the 
factors that makes equation 58 difficult to evaluate is the possible generality of the 
source plane irradiance NQ.   This difficulty can be alleviated by restricting equation 58 
to the case where NQ is a unidirectional, unipotent point source located at the origin 
and symbolized by N0

ps. 

N£ps   = 6(cos81 - 1)8(*,)80£)   , (61) 

where N£ps   is of unit strength since 

N»P'dnodxJ= 1. (62) 
/ 

The restriction of NQ to   NQ
PS
 can be made without loss of generality in the small 

angle ;i£>proximation.   If Hups(xT, yT, R) is the target plane irradiance resulting from 
a source plane radiance   NQ

ps(x0, y0, 0,, <£,), then the target plane irradiance 
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H(xT, yT, R) of an arbitrary source NQ(x0, y0, 0,, </>,) can be expressed as 

H(xT, yT, R) = | JJiPP'iXj - x0 - Röjcosipj, yT - y0 - R0,sin*I? R) ■ 

N0(x0,y0.ff1,^1)d3Jdni} (63) 

in the small angle approximation.   Equation 63 is just a convolution bcvveen Hups 

and NQ, with Hups serving as an impulse response function. 

The function Hups has much utility in the field of underwater optics and is known 
as the beam spread function.   Due to the reciprocity theorem for underwater optics 
(reference 9), Hups also yields (aside from scale factors) the point spread function, 
which is the image plane irradiance due to light radiated by an omnidirectional point 
source.   The Fourier transform of the point spread function, known as the modulation 
transfer function (MTF), is used to describe contrast degradation as a function of 
range and spatial frequency. 

Our main use of Hups will be in conjunction with equation 63 and for the case 
where NQ becomes the radiance distribution, Nc, due to a point source conical 
beam of strength FQ and solid angle flc expressed as 

Nc = 
-#6(xo}        ö..*, enc 

0,,*>j 4 nc 

(64) 

The on-axis (i.e., xT = 0, yT = 0) irradiance due to this source is, from equation 63, 

H(0 , O, R) = { /y*HuP» ("xo -Rfl.cos*,, -yQ -RÖ.sin^, R) • 

f 5 (^o00, } • 
Fc 
n. (65) 

Letting 

x = RöjCOs^j;   y = R0 sin^j (66) 

and dropping the dummy index 1, we have 

FnF(ft„) 
H(0,0,R) -     °      c 

"cR2 
(67) 
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where 

. /H- F(J2C) =    /  H"PS (x.y,R)dxdy. (68) 

nc 

Equation 67 has been previously derived by Funk (reference 10) for the case of a 
spherical geometry. 

Equation 67 allows us to evaluate the on-axis irradiance of conical beams.   The 
restriction to on-axis irradiance is usually of little practical consequence since it is 
common to evaluate imaging systems on the basis of on-axis performance (reference 
11).   Fquation 67 may be used to delimit the on-axis irradiance of a square beam 
by considering the irradiance of the inscribed and circumscribed cones. 

The most important property of the on-axis irradiance is that it is proportional to the 
integral of the "ups" irradiance across the beamwidth.   The significance of this result 
is that the spatial derivative of the flux (i.e., the irradiance) can b? expressed in terms 
of the flux alone.   In view of the approximations we are about to make, this is a 
welcome property since a function itself is often less sensitive to certain approximations 
than its derivative. 

FLUX THROUGH AN APERTURE      The primary goal of this section is to compute 
F(fi) (equation 68).   Knowledge of this function will allow evaluation of the on-axis 
irradiance as well as energy distribution contours in the target plane. 

Using equation 58 to express Hups, we have 

X       (sR)Np-sR 
Hups  =  e-aR     j        (SR) V   _      /n£Ps\    . (69) 

where from equation 59 

N+l      f 
pCOi+1, ,)Nu

0
ps dS2r (70) 

a 

Substituting equation 69 into equation 68, we obtain 

F(ß)«e--»    !    Mg±lR 

N=0        N! 

26 

<5ps)> (71) 

■BMIi ■•'im-'mlii „i-m-ni tiiirftiir^imw^  ^^^p^^ 



with 

f"ps =   rhups dx*" (72) 

Although equation 71 is simple in form, consideration of equations 72 and 70 shows 
that its evaluation is non-trivial.   To obtain an indication of how to proceed, we 
rearrange equation 71: 

F(ß) = e"aR e"sR      Z    l^LJ^^-J-, (73) 
N=0 N! 

It is now clear that approximating   \ixP/   by a quantity of the form 

<^f»P^>   ~    aPN (74) 

will make equation 73 summable (to a exponential) and also will require the evalua- 
tion of only two quantities (a and P) rather than the infinite set   )    f^ps   I   .   Some 
justifications for approximating     \f^p /    by ' ' 

<<NP>     -    <foPS>l-^r-| W) 
'o 

will now be given. 

Inspecting equation 75 shows that      ^N
PS
/

>
   's reproduced exactly for N = 0 or 1 

and thus the approximation is correct for small distances, i.e., for sR   «1. 

Second, equation 75 is correct when the scattering function p(0) is a delta function, 
i.e., when 

p(0)= il£oj^J_). (76) 

Since oceanic scattering functions are highly peaked, agreement of equation 75 in the 
limit of equation 76 is reassuring. 
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Finally, equation 75 is subject to a simple physical interpretation.   It states that the 
amount of the flux (< fjjps > ) reaching the aperture ß after N scatterings equals the 
original source strengtn (< f£P* > ) times a factor (< f,uPs >/ < f£ps >), which 
equals the probability of being scattered by less than an angle ß, this probability 
being raised to the Nth power.   Thus, equation 75 assumes that the result of N 
scatterings is the same as the result of N consecutive single sc itterings.   For these 
scatterings only the flux within an angle S2 contributes to the source term for the next 
scattering, and the flux distribution resulting from any given scattering can be consoli- 
dated into a point source.   This interpretation seems reasonable for scattering at 
moderate ranges by a volume scattering funct;jn which is highly peaked.   At longer 
ranges, equation 75 must break down since some of the flux originally scattered out- 
side fl will return and the succeeding source distributions will depart significantly from 
point sources. 

A rigorous mathematical argument concerning the domain of validity of equation 75 
is beyond the scope of this work.   Our main justification for this approximation lies 
in Part II of this report, in which formulas based on this approximation show good 
agreement with both Monte Carlo and experimental results.   Utilizing equations 75 
and 73. we obtain 

F(fl) =   <f»0P*> e-ÖR + s <f'r>/</oüpS> R. (77) 

To proceed, we must evaluate   \f"p/   and   \fQ
psy        From equations 61, 

and 72 we have 
70. 

= JJ8(cosOi - OS^Wx^dSV^V 

Now, 

(78) 

5(x0) = 5(x0)5(y0) = 5(x,  - RÖ^os^ )6fyI  - RÖjSin^ ). (79) 

Evaluating the delta function over dfl    we obtain 

<0'ÖPS>   = /«(x.Wy.Jd^ (80) 

so 

<'oPS>    » (81) 
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For <fr> - 
/f"ps\  _ 

Integrating over dJ2 

/,-upsV   =  >/ y J &ß2)&(*imytmLiä%tox 

Writing 

dtt    =   dxidyicos3g
2..  dXjdy, 

i    "~T~ 
and integrating over x^, we obtain 

<T>   = /y /• P(0,) 
dx2dr, 

/ dr. 

(82) 

(83) 

(84) 

(85) 

and 

Ö2 = arc tan -2 L2! 

1 

dx2      dx2dy 2"'2    ~ ö,de,d^, s c-n 
*2 '2 

and dropping the subscript 2, we obtain 

R 

2 "w 2 "^2 

y    y p(ö)dn 

<r jp»> = ° JA  

7  dr. 

dr. 

(86) 

(87) 

(88) 
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where 0A is the half-angle subtended by a circular aperture (or by the intersection 
of a conical beam) centered on the target plane as viewed from the first scattering 
plane, i.e., 

0.  = arc tan —- (89) 

where r    is the radium of the aperture. 

We note that the quantity in square brackets in equation 88 is just the distribution 
function associated with the normalized cross section p(0).   The distribution function 
is the form in which underwater cross sections are often tabulated; however, evalua- 
tion of    ^fu,p/    requires the value of the distribution function to be averaged 
over Tf.   In line with our attempt to present the simplest possible description of 
multiple scattering which retains some predictive value, we shall now approximate 

<J7ps> by 

<fr> flips 
I 

=R/2 
(90) 

That is, we shall drop the average over the scattering plane's location in favor of 
evaluating the function fops for the case of the scattering plane located exactly 
halfway between the source plane and the target plane.   This yields 

<fIP) flips 

■/ 
p(0)dft, 

r. =R/2    8' 
(91) 

where & is the polar half-angle subtended by the circular aperture for an on-axis 
observer located midway between the source and target plane. 

Using equations 91, 81, and 77, we obtain for F(O). the flux through a circular 
aperture due to a unidirectional point source of unit strength, 

-a + s   J 

F(ß) = e 
0' 

p(0)dfl 

(92) 

Due to the linearity of the scattering process, for a source of strength FQ equation 
becomes 

88 
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F(tt) = F0 

-a+s    J   p(0)dfi 
6' 

e 

R 

(93) 

Using equations 92 and 67, we obtain for H(0,O.R), the on-axis target plane irradiance 
due to a point conical beam of solid angle ilc and strength FQ, 

H(O.O.R) = 
ficR2 

f -a+s  J 
0' 

p(0)dfi 

(94) 

We note that both the flux through an aperture and the on-axis irradiance are governed 
by an effective attenuation coefficient, aeif, defined by 

(95) 

In addition to being easily calculable, aeff also has reasonable limiting forms.   For 
0'-*Q, ae{{-*ct, as would be expected from a narrow beam where almost all scattered 
photons remain outside the beam.   For 0'-*ir, aeff-*a, which corresponds to the 
intuitive statement that if all the scattered light remains in the beam, this light is 
then attenuated by the absorption coefficient. 
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CONCLUSION 

Equations 93 and 94 represent the main formulas of computational interest to the 
systems designer.   With very little computational investment, they provide useful 
expressions for flux and on-axis ir.adiance.   Part II of this report shows that (for 
the cross section tested) equation 93 retains predictive value out to six scattering 
lengths or seven to ten attenuation lengths, depending on the s/a ratio. 

We have used equation 58 as a starting point for deriving expressions for on-axis 
irradiance and flux through an aperture.   It also serves as an excellent departure for 
the derivation of the water's MTF.   By taking the Fourier transform of equation 58 
and applying the small angle approximation consistently, a series expression for the 
MTF can be obtained.   By suitably applying and extending the model other quantities, 
such as off-axis irradiance, can also be derived. 

The iterative method has shown its ability to yield results in agreement with 
Monte Carlo, experimental, and analvtic approaches and should thus be considered 
a useful and important approach to multiple scattering problems. 
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APPENDIX A 
THE NO-RETURN BACKSCATTER APPROXIMATION 

We will confine our attention to scattering on a line since for this case the problem 
is exactly solvable.   In figure A-l, FQ is a source of photons located at x = 0, where 
all these photons initially travel to the right on the line [0, » ] and 

u(x) 
v(x) 
b,a,s 
A 
bsA 
aA 

flux at point x traveling to the right 
flux at point x traveling to the left 
backscatter, absorption, and scattering coefficient, respectively 
a small increment in length along the x-axis 
probability of being backscattered in the interval A 
probability of being absorbed in the interval A. 

By considering the various loss and gain processes, we can write for u(x) 

u(x + A) = u(x) - aAu(x) - bsAu(x) + bsAv(x + A). (A-l) 

In this equation, u(x) is the original flux, aAu(x) is the amount lost by absorption, 
bsAu(x) is the amount lost by backscatter, and bsAv(x + A) is the amount of flux 
gained by the rightward-moving beam due to backscatter of the leftward-moving beam 
(i.e., the returned backscatter). 

Noting that 

v(x +   A) - v(x) + ^v- 
dx 

A 

x=x 

we have, to first order in A, 

(A-2) 

u(x + A) = u(x) - (a + bs)Au(x) + bsAv(x) (A-3) 

Similarly, for v, 

v(x) = v(x + A) - (a + bs)Av(x) + bsAu(x) (A-4) 

Dividing equations A-3 and A-4 by A, and rearranging and letting A-+0, we obtain 

du 
dx 

= -qu(x) + bsv(x) (A-5) 

33 



u(x) 

v(x) 

u(0) 

x+A 

Figure A-l.   One-Dimensional Ba-kscatter Geometry. 

34 

I  Wt   IIHMlllliilil--- —■--•-- ^^^^^«a«a. ■ nn.i.wn-  ii.nm.niintii.funaM 



and 

dv 
dx 

= +qv(x) - bsu(x)   , (A-6) 

where q = a -i bs. 

Differentiating equation A-5 and using equations A-5 and A-6, we obtain 

diii = ^ du + bs Ay 
dx' dx dx 

Similarly, for v(x), 

dju _ 
dx2 

-q(-qu(x) + bsv(x)) + bs(qv(x) - bsu(x)) 

= (q2 -(bs)2)u(x) (A-7) 

diy = ,n2 

dx: 
= (q2 -(bs)2)v(x)   . 

Therefore, u and v have solutions of the form 

u(x) = Ae 
-   \   q2   •   (bs)2     X 

+ Be 
+   V q2   -  (bs)2     x 

(A-8) 

(A-9) 

and 
-  V q2   -  (bs)2     x + \ q2   - (bs)2       x 

v(x) = Ce + De (A-10) 

Because of the absorptive properties, we require u(x) and v(x)-K) as x~* + »   , so that 

and 

\   q2   -  (bs)2       x 
u(x) = Ae 

v(x) = Ce 
\  q2   -  (bs)2       x 

CA-11) 

(A-12) 
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but u(x = 0) = FQ => A = F0, whence 

u(x) = FQe 
< q2   -  lbs)2       x 

(A-13) 

And by substituting equations A-13 and A-12 into equations A-5 and A-6, we obtain 

bs C = aji_Va!.^s)i F   = __ 
*• l o   

bs q +   Vq2 - (bs)2 

(A-14) 

Now making the no-return backscatter approximation means we drop the term 
+ bsAv(x) from equation A-3, obtaining 

u(x + A) = u(x) - (a + bs)Au(x) (A-15) 

and rearranging and letting A-K), we obtain 

^ = -qu(x) , 
dx 

(A-16) 

which has the solution 

u(x) = FQe-qX (A-17) 

The question is, at what range x = r does the flux predicted by the simplified result, 
equation A-17, begin to depart significantly from equation A-13, which includes the 
effects of returned backscatter.   If we define a fractional error e « 1 as a significant 
departure, then we require 
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yj q2   -   (bs )2      r •qr 

Fofc 

= e 
F e"qr 1 oc 

(A-18) 
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or 

+(-   V<T   - <b$)2  +   q)r 
=   1   + e . (A-19) 

Letting 

we have 

a    =   s/c 

c     =   s/a ratio 
sr   =   R 

(A-20) 

+<-l/c   \  1   +   2bc   +   1/c  +   b)R 

= 1 + e (A-21) 

for ocean waters 

so that 

2bc « 1 (A-22) 

^2 
(1 + 2bc)» ~ I + be - M- 

2 (A-23) 

Inserting equation A-23 into A-21, 

but since e«  I we obtain 

b2cR 

1 +c , (A-24) 

(A-25) 
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APPENDIX B 
PROOF OF EQUATION 57 

Equation 57 asserts that 

N+l    f 

i=l   J 

N 
R-   I   r 

i+1 
dr  = R^ 

N! 

First, we will verify this formula for N = 1. 2, 3. 

For N = 1. 
1 

rR-   I   r 
1     /       i+1 

i=l  J 
0 

'*■-/ *, = R R1 

1! 

For N = 2, 

R    c R-r, 

clTj tlr2 

G        0 

= y       (R - r2)dr2 

Rr, ■ -^ 

For N = 3, 

= R 2     R
2 _ R2 

2        2! 

i=l   J 

R-   I   r. 
i+1    J 

R    /* R—r,     r R-r^ -r7 

dr; dr,dr2dr3 

0       0 0 

38 

f in    nri   nn unmi mi -iri-in   iinnriiinrnfriMmiWMrtintiliftllli'iiiWMit[jfl|Bi|rii|ffi^«a^»"-''M■»^^^«-.■^^^^--^^^^^.^^M^^M«^  - —a— .- 



-R    /-R-r, 

■n o     o 
(R - r, - r2)dr,dr 3     .2/M.2V,,3 

■/ 

R R-r, 

Rr2   " !3r2  " "2 dr, 

/R r 
dr, 

R 

i/: R2r3-Rr^ + -| 

_ Rj .  R3 

6       3!  ' 

Now, if we define 

N 
R-   I   r 

N     f       j+ 

i=l  J 

j /-K    /.K-rN     rK-rN-rN+1 r 

0       0 0 

R- '■•   r. 

dr, drN   S FN(R) 

and assume 

we need only prove that 

pN 
FM(R) = =- 

N N! 

RN+1 
FN + .(R) = i>  N + 1 (N+l)! 
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But 

WK>-7 v   y     • y    dri...drN+l 
■R    /-R-r, 

0       0 0 

7      \J J dri   -drN 
o     |_o o 

Letting R - rN + ,  = R' , 

drN + N+l 

then 

FN + I<R)= / 

R 

/" ■■/"" 

o        •'o 

•• -r. 

dr,   - drN dr, 
N + l      • 

but the quantity in brackets is FN(R'), 

so 

But 

for 

WR)-/^^ 

drN + ]  = -dR' 

so that 

rN + 1  =0 R' = R 

rN + 1  = R        R' = 0 

w*>--y 
R 

(R')N 

N! 
dR' 
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and evaluating the integral yields 

FN+1(R) _ R N+l 

(N+1)! 
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PART II 

EVALUATION OF THE EXPONENTIAL 

MULTIPLE-STATTERING MODEL 

by 

Max R. Knittel 
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INTRODUCTION 

The purpose of this section is to evaluate the predictions of radiant energy flux 
through an aperture developed from Gordon's exponential model.   This will be done by 
comparing them with the predictions of a Monte Carlo simulation model and with 
experimental data. 

The radiant energy flux passing through an aperture has significance in underwater 
optics for two reasons.   First, it is important in areas concerning the power distribution 
of a collimated source (e.g., a laser) after the beam has travelled a given distance under- 
water; for example, target illumination or amount of energy reaching a receiver. 
Second, the flux through an aperture is related to the on-axis irradiance of a conical 
beam, which is significant because the available irradiance is an important design param- 
eter for underwater optical imaging systems. 

Because of the significance of the radiant enetgy flux, rather lengthy comparisons will 
be made of this quantity as a function of aperture angle, range, and scattering to 
absorption coefficient (s/a) ratio.   It is hoped that these comparisons will serve as a 
guide to the various r:gions of validity for the results of Gordon. 
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COMPARISON SOURCES 

EXPONENTIAL MULTIPLE-SCATTERING MODEL 

The exponential multiple-scattering model developed by Gordon in Part I is presently 
formulated to predict the radiant energy flux produced by a unidirectional point source 
for a given combination of range, aperture angle, and s/a ratio. 

To illustrate the geometry of this model, let a unidirectional point source illuminate a 
screen placed perpendicular to the light source axis.   If FQ is the radiant energy emitted 
by the unidirectional point source and F is the energy flux intercepted by the screen 
placed at a distance R inside a cone of half-angle 7 (a circular aperture of radius r), 
then the ratio of these will yield the fraction of energy that remains inside the circular 
aperture.   This arrangement is shown in figure 1.* 

The basic equation of the model as given by Gordon is 

f- =e    {[-a + 8/yP(ff)dn]R}. (i) 
ro 

where 

a      = total attenuation coefficient (meters'1), 
P(a) = (a) (0)/s = probability density function of volume scattering. 
R     = range (meters), 
7'     = half-angle of the cone measured from the midpoint of the range 

(degrees). 
-FT-   = normalized radiant energy flux through the .jrget aperture, 
^o 

It has been established thai the ratio c = s/a is easily measured, but the quantity s 
itself is not.   To write equation 1 in terms of the ratio c, the quantity aR, which 
defines the range as measured in attenuation lengths, must be written in terms of c. 
Substituting the definition of the total attenuation coefficient 

a -■ a + s, (2) 

aR can be written as 

aR   =   (a + s)R 

=   aR(l + c). (3) 

'Figures are placed ct the end of Part II. 

46 

,,„.,„ .»„„.„^..^.a»^^  —-■  



Rewriting equation 1, we obtain 

j 
F 
F.   =   e[-«R + sR /\p(o)<m] 

=   e|-«R + caR f ,?(a)dü) 

- e H + iWyp(")dß] 

(4) 

From equation 4 it can be seen that the radiant energy flux for a unidirectional point 
source decreases exponentially with distance.   It can also be seen that an effective 
attenuation coefficient, aeff, can be defined such that 

«eff = a[ ' " r+7//K0)dn] • (5) 

Single-scatter underwater visibility models predict a normalized radiant energy flux 
given by 

Fo 

which  -orresponds to 

>P(o)dn = 0. X 7 

Therefore, the effective attenuation coefficient aej-j- is bounded on one side by a. 
On the other side, the effective attenuation coefficient is bounded by a- s since 

1   > /yP(c;)dft > 0 

and 
c      _   s_ 

! + c        a' 

Hence, 
a > aeff ^ 

a- ^ 

MONTE CARLO SIMULATION MODEL 

In order to simulate increasingly complex underwater imaging systems, Funk has 
developed a method for describing the propagation of light underwater that includes 
the effects of multiple-scatterings (references 1 and 2).   In this method Monte Carlo 
techniques are used to calculate effective attenuation coefficients for illuminating, image- 
forming, and backscattered light; these coefficients permit the most significant effects 
of muitiple-scattering to be incorporated into an underwater visibility model. 
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The simplest form of the Monte Carlo calculations for predicting the radiant energy 
flux from a unidirectional point source is a specialized three-dimensional random walk. 
The scattering and absorption properties of the water are found in terms of probability 
distribution functions thit characterize the direction and length of each step in the 
random walk. 

DATA FROM DUNTLEYS EXPERIMENTS 

For a number of years, S. Q. Duntley of Scnpps Institution of Oceanography, Visibility 
Laboratory, has been investigating the propagation of light in water.   During this 
investigation, numerous experiments were performed in both fresh water at Diamond 
Island, New Hampshire, and simulated ocean water of various s/a ratios in a laboratory 
tank.   A laser was used as the light source, and measurements of the radiant energy 
flux were made at varying ranges and collector angles.   The experimental procedure was 
to measure the energy at an off-axis collector angle y' at a radius r from the source. 
The data were then integrated to obtain the total power on a spherical cap, with y' as 
the half angle of the cap.   These experiments are described in reference 3 
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COMPARISON OF EXPONENTIAL MODEL WITH 
TWO OTHER SOURCES 

Using equation 4, it is now possible to compare the predictions of the exponential 
model with those of the Monte Carlo multiple-scattering model and the experimental 
data accumulated by Duntley. 

Theoretical predictions were provided by Funk for the chosen cases from the Monte 
Carlo simulation model, and equation 4 was programmed on a desk calculator to give 
predictions from the exponential model.   Representative sets were chosen from Duntley's 
data to serve as a basis from which to assess the accuracy of the two visibility models. 

The J  >P(o)d£l was interpolated from the table of the experimental volume scattering 
distribution function as calculated by Duntley (table 1*).   The seven aperture cone 
half-angles chosen by Funk for the Monte Carlo model were used here.   The angles 
that Duntley defines in his experiments and those used in Gordon's theoretical model 
are related through the expression 

tan y' = 2 tan 7. 

The angles 7 (and 7') and the corresponding scattering probabilities are shown in 
table 2. 

Tables 3 through 11 show the radiant energy flux as a function of aperture and range 
for three s/a ratios.   The results of the calculations using equation 4 are shown in 
tables 3, 6, and 9 for the ratios 3.56, 2.28, and 1.48, respectively.   In a similar 
manner, tables 4, 7, and 10 display the predictions of the Monte Carlo simulation 
model, and tables 5, 8, and 11 display the experimental results as compiled by Duntley. 

Figures 2 through 22 show the predictions of the exponential multiple-scattering model 
(designated as E-model in the graphs for brevity) as straight lines on ssmi-logarithmic 
paper.   For comparison, the predictions of the Monte Carlo simulation model (desig- 
nated as M-model) and the experimental data of Duntley (designated as D-data) appear 
as crosses and circles, respectively, on the appropriate exponential model line. 

RELATIVE ERROR AS A FUNCTION OF RANGE 

Figures 2 through 22 indicate that both the exponential and Monte Carlo simulation 
model predictions give very close agreement with the set of selected experimental data. 
In order to see this agreement more easily, a simple type of error analysis was per- 
formed to give an idea of the relative differences between the results of the two 
models and the experimental data. 

* Tables are placed at the end of Part II. 
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Because the exponential model of Gordon is based upon the assumption of small angle 
forward scattering, the validity of the small angle approximation is reduced as the 
number of scatterings increases, which tends to make the model predictions less accu- 
rate.   To show this, the unit of measurement for the range was changed from attenua- 
tion length to scattering length.   Now. the exponential model should tend to brea* 
down at the same range in all cases; i.e., the model should break down after the same 
number of scattering lengths, regardless of the s/a ratio.   The scattering length, sR. can 
be found from the attenuation length aR through 

sR aR 
1 + a- 

s 

(8) 

where 

sR = range (scattering lengths), 
aR = range (attenuation lengths), 
a = absorption coefficient, 
s = scattering coefficient. 

To find this average error, an error equation of the form 

Error 

7 angles 

E 
i = 1 

In theoretical model flux 
experimental flux 

(9) 

was used to find an average error value over all of the seven aperture cone half-angles. 
Table 12 shows the results of these calculations.   The errors between the exponential 
model predictions and the experimental values are denoted by E/D, while the errors 
between the Monte Carlo simulation model predictions and the experimental values are 
denoted by M/D.   Figures 23 through 25 display these results for the three s/a ratios 
investigated. 

RELATIVE ERROR AS A FUNCTION OF APERTURE ANGLE 

Another way of examining the differences between the predicted radiant energy flux 
and the experimental d.i^a is to calculate the error averaged over all the ranges for the 
various aperture cone half-angles.   In this case, the formula used to calculate the 
average error is given by 

10 ranges 

E jn / theoretical model flux 
1      experimental flux 

'/2 

Error     = 
10 

(10) 

50 

iMiiiii----~-^initfm«iW'iir--^-*^--"'-a"        . ■■■nm inurtmiTtmim mini-- itrtMMMil IBiijgBiiSlüaiMMBBilMMII 



The results of these calculations for the exponential model (E/D) and the Monte Carlo 
simulation model (M/D) are summarized in table 13.   Figures 26 through 28 display 
these results for the three s/a ratios investigated. 
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CONCLUSIONS 

By examining figures 23 through 25, it can be seen that the differences between the 
predictions of the exponential model and the multiple-scattering simulation model for 
ranges up to six scattering lengths are not very significant.   In terms of attenuation 
lengths, this range corresponds to seven to ten attenuation lengths, depending on the 
s/a ratio.   The exponential model does tend here to slightly better predict this particu- 
lar set of experimental data, but it is also apparent from these graphs that when the 
exponential model does break down at the longer ranges, the Monte Carlo simulation 
method still continues tc offer reasonable predictions for calculating effective attenua- 
tion coefficients. 

Looking at figures 26 through 28, it is apparent that the accuracy of the exponential 
model is greater for small angles (less than 2°) and large angles (greater than 10°), but 
that the Monte Carlo simulation model appears better able to predict the experimental 
results for the intermediate angles.   Again, the differences are undoubtedly not very 
significant. 

In addition, it must be stressed that the accuracy of the two models has been assessed 
here on the basis of only one set of experimental data.   While there is no reason to 
believe that the data are biased in any manner, such a limited comparison may not 
yield the same results as one supported on a broader base of experiment.   Such a 
comparison may show slight differences in the relative accuracy of the two models. 

Therefore, in the final analysis, it can be stated that the ranges up to seven to ten 
attenuation lengths, this simple, exponential formula rivals the Monte Carlo model in 
accuracy of predicting radiant energy flux or on-axis irradiance due to conical beams 
and surpasses it in ease of use.   When supplied with a table of volume scattering 
distribution functions, one can easily predict what fraction of the energy produced by 
a narrow-beam light source will reach a target of known size located at selected 
distances from the source.   The limitation to ranges of less than seven to ten attenua- 
tion lengths is not a disabilitating one since the most sophisticated underwater viewing 
systems now available can detect an object at a maximum range of only about seven 
attenuation lengths.    However, for questions other than flux through an aperture or 
on-axis irradiance or for ranges greater than six scattering lengths, one must at present 
look for tools other than the exponential model, such as Monte Carlo analysis. 
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Figure 1.   Geometry of the Exponential Model. 
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Figure 1.   Radiant Energy Flux as a Function of Range for s/a = 3.56, 7= 0.10 . 
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Figure 8.   Radiant Energy Flux as a Function of Range for  s/a = 3.56, 7= 100.00 
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Figure 9.   Radiant Energy Flux as a Function ot Range for s/a = 2.28, 7= 0.10 

61 

III '  iilinlii   III IIH     Ti   I    II I Hilt^^lilir-HHTTHHnJlM.l   .. , I  ,■»,.,,,. „.n.,,!. ■„,,.„.   .i ,., ,, ■HWUM.nTattlrf,,, 



1x10" 

1x10 -2 

1x10" 

1x10 -4 

1x10 5L 

— E-model 

X M-model 

O    D-data 

_L JL _L 
2.0 4.0 6.0 8.0 

Range (attenuation lengths) 

10.0 12.0 

Figure 10.   Radiant Energy Flux as a Function of Range for s/a = 2.28, 7= 1.00 . 
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Figure 11.   Radiant Energy Flux as a Function of Range for s/a = 2.28, 7= 2.51^ 
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Figure 12.   Radiant Energy Flux as a Function of Range for s/a = 2.28, J- 6.31 
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Figure 13.   Radiant Energy Flux as a Function of Range for s/a = 2.28, 7= 10.00 . 
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Figure 14.   Radiant Energy Flux as a Function of Range for s/a = 2.28, 7= 25.11 
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Figure 15.   Radiant Energy Flux as a Function of Range for s/a = 2.28, 7= 100.00 . 
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Figure 16.   Radiant Energy Flux as a Function of Range for s/a = 1.48, 7= O.ICT 

68 

12.0 

aflammaMgmMmM jtfüaaim,    mmmgjgnmnniggg ^t^aai^i«^^^. -. 



1x10" 

1x10" 

1x10" 

1x10" 

1x10" 

— E-model 

X M-model 

O    D-data 

2.0 
_L J_ 

4.0 6.0 8.0 

Range (attenuation lengths) 

10.0 12.0 

Figure 17.   Radiant Energy Flux as a Function of Range for s/a = 1.48, "f'-- 1.00 
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Figure 18.   Radiant Energy Flux as a Function of Range for s/a = 1.48, 7= 2.51" 
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Figure 19.   Radiant Energy flux as a Function of Range for s/a = 1.48, y = 6.31 
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Figure 20.   Radiant Energy Flux as a Function of Range for s/a = 1.48, 7= 10.00 
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Figure 21.   Radiant Energy Flux as a Function of Range for s/a = 1.48, 7= 25.11 
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Figure 22.   Radiant Energy Flux as a Function of Range for s/a = 1.48, 7= 100.00 . 
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Figure 23.   Average Error as a Function of Range for s/a = 3.56. 
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Figure 24.   Average Krror as a Function of Range for s/a = 2.28. 

76 

 ■■'-.-.■■ 1 ■-•■-» »-■-'^-^^--^riiifii'fiMlrillllMiifl-iililiirr-Biitii ■°-J""J^-1'""*-"""^iiii>»lii'ffni<»y^ 



2.0 4.0 6.0 8.0 

Porige (scattering lengths) 

10.0 

Figure 25.   Average Error as a Function of Range for s/a = 1.48. 
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Figure 26.   Average Error as a Function of Aperture Angle for s/a = 3.56. 
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I igurc 27.   Average Error as a Function of Aperture Angle for s/a = 2.28. 
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Tible I.   Volume Scattering Distribution Functions From S. Q. Duntley. 

y ^,P(9)dO Y ^,P(0)dO 

0.000 0.00000 0.100 0.01530 
0.120 0.02040 0.150 0.02720 
0.170 0.03170 0.200 0.03790 
0.250 0.04700 0.300 0.05570 
0. 350 0.06380 0.400 0.07150 
0.500 0.08520 0.600 0.09800 
0.700 0.11000 0.800 0.12130 
0.900 0.13240 1.000 0.14220 
1.200 0.16130 1.500 0.18630 
1.700 0.20290 2.000 0.22760 
2.500 0.26050 3.000 0.29180 
3. 500 0.32350 4.000 0.35390 
5.000 0.4U510 6.00C 0.45030 
7.000 0.49300 8.000 0.52790 
9.000 0.56050 10.000 0.58990 
12.000 0.63490 15.000 0.68760 
17.000 0.72070 20.000 0.76180 
25.000 0.81170 30.000 0.84650 
35.000 0.87540 40.000 0.89670 
50.000 0.92590 60.000 0.94370 
75.000 0.96090 90.000 0.97160 
105.000 0.97970 120.000 0.98600 
135.000 0.99140 150.000 0.99580 
165.000 0.99880 180.000 1.00000 
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Table 2.   Interpolated Volume Scattering Distribution Functions. 

y V fyP(6)dQ 

0.10° 0.20° 0.0379 
1.00° 2.00° 0.2276 
2.51° 5.01° 0.4055 
6.31° 12.47° 0.6432 
10.00° 19.43° 0. 7540 
25.11° 43.15° 0.P059 
100.00° 109.43° 0.9816 
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